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Abstract

Two-dimensional thermocapillary convection in an open cylindrical annulus heated from the inside wall is com-

puted. The deformable free surface is obtained as a solution of the coupled transport equations, assuming pinned con-

tact points, at Prandtl number of 30 and prescribed geometry. Only steady convection is possible at any Reynolds

number (Re) in the axisymmetric computations with either nondeformable or deformable surfaces. Dynamic free-sur-

face deformations do not induce transitions to oscillatory convection even at large Re and capillary numbers (Ca). Free

surfaces are convex near the cold wall stagnation point and concave near the hot wall. Two peaks appear at the free

surface at low Re while four peaks are possible at larger Re. Free surface shapes and convection in the interior are insen-

sitive to variations in Ca while the magnitudes of surface ripples increase with Ca. At Ca = 0 convection is calculated

assuming nondeformable concave surfaces as function of the liquid volume (V) and the contact angle (h) at the inner

boundary. At constant V, peaks of surface velocity increase while central surface temperatures decrease with increasing

h. Curvature significantly influences convection which is more vigorous with increasing V/h at constant h/V.
� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Buoyant and thermocapillary forces cause convection

in the melt during crystal growth on Earth. However, in

a microgravity environment, thermocapillary forces

dominate. Thus understanding thermocapillary flows is

important to material processing in space. Accordingly,

there have been a large number of experimental and

numerical studies of surface tension driven convection

in open rectangular and cylindrical containers. Most of

the numerical studies considered thermocapillary con-
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vection with nondeformable surfaces, and a few included

deformable surfaces.

Schwabe et al. [1] studied experimentally thermocap-

illary flows with Pr = 17 in two types of shallow liquid

layers heated from the side: one is a rectangular config-

uration, the other an annular slot. In the annular slot

heated from the inner rod, they observed azimuthal

wavetrains travelling on the free surface, and found that

the number of wavetrains increased as Ma increased.

For thin annular gaps, Schwabe [2] confirmed the exist-

ence of azimuthally travelling wavetrains on the free sur-

face. Kamotani et al. [3] investigated experimentally

surface tension driven convection with 2 cSt silicone oils

induced by placing a cylindrical heater at the center of

annuli. Their experiments included flat and curved sur-

faces, which were determined by the liquid volume.
ed.
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Fig. 1. Physical system.

Nomenclature

Ar aspect ratio, R/H

Bi Biot number, hH/k

Ca Capillary number, cDT
r0

H height of the cylinder

h convective heat transfer coefficient

k thermal conductivity

Ma Marangoni number, Pr Æ Re
P nondimensional pressure

Pr Prandtl number, m
a

R outer radius of the annulus

Ri inner radius of the annulus

r radial direction

Re Reynolds number, c DTH
ml

Rec critical Re

T nondimensional temperature

T �
hot dimensional inside wall temperature

T �
cold dimensional outside wall temperature

DT characteristic T, T �
hot � T �

cold

u nondimensional radial velocity

V nondimensional liquid volume

v nondimensional velocity vector

v nondimensional axial velocity

z axial or vertical direction

Greek symbols

m kinematic viscosity

l dynamic viscosity

a thermal diffusivity

c �or/oT
r surface tension

q density

h contact angle in the inside wall

Subscript

0 reference state
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Several numerical studies with curved surfaces have

been performed in two-dimensional rectangular cavities.

Chen et al. [4], Chen and Hwu [5], Hamed and Floryan

[6] and Jiang et al. [7] considered oscillatory thermocap-

illary convection with deformable surfaces in two-dimen-

sional cavities. Two-dimensional numerical simulations

of steady convection with deforming surfaces in cavities

were studied by Mundrane et al. [8]. Mundrane and

Zebib [9] showed that small free surface deformations

did not induce transition from steady to oscillatory con-

vection in a two-dimensional cavity with a low Pr fluid.

Dynamic surface deformation in liquid bridges were

investigated in the limit of small capillary number [10].

Sim et al. [11] performed axisymmetric numerical simula-

tions in liquid bridges with dynamic free surfaces and

showed that dynamic surface deformation with

Ca 6 0.1 was negligible in axisymmetric liquid bridge.

Lappa et al. [12,13] showed transition to steady nonaxi-

symmetric states with low Pr in nondeformable and non-

cylindrical liquid bridges. Two- and three-dimensional

thermocapillary convection with nondeformable curved

surfaces were performed in open cylinders and liquid

bridges with high Pr by Sim and Zebib [14,15]. They

showed that only steady thermocapillary convection with

either flat or curved surfaces was possible in strictly axi-

symmetric computations.

Although a few numerical studies with deformable

surfaces have been performed in two-dimensional rec-

tangular cavities, there is no work available for cylindri-

cal annuli. In the present work we report on simulations

of two-dimensional thermocapillary convection in open

annuli with deformable interfaces. The shape of the free

surface is unknown and is calculated as the part of the
complete solution. Numerical results with a nondeform-

able flat surface are compared with those from available

space experiments. The influence of Re, Ca, V, and sur-

face heat loss on convection is investigated.
2. Mathematical model

The physical system considered is an open cylindrical

annulus with inner and outer radii, Ri = 0.1R and R, as

shown in Fig. 1. It is filled with an incompressible, New-

tonian fluid to a height H. The aspect ratio (Ar = R/H)

of 1 and Prandtl number of 30 are used to study the

effect of the surface deformation on thermocapillary
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convection. The vertical inside and outside walls have

nondimensional temperatures, Thot = 1 and Tcold = 0,

and the bottom is an adiabatic solid wall. Surface ten-

sion is assumed a linear function of temperature,

r ¼ r0 � cðT � T 0Þ: ð1Þ

With negligible body forces, the nondimensional gov-

erning equations are:

r � v ¼ 0; ð2Þ

Re
ov

ot
þr � ðvvÞ

� �
¼ �rP þr2v; ð3Þ

Ma
oT
ot

þr � ðvT Þ
� �

¼ r2T : ð4Þ

The length, temperature, velocity, pressure, and time are

normalized with respect to H, DT, cDT
l , cDT

H , and lH
cDT ,

respectively.

The boundary conditions considered are:

u ¼ 0; v ¼ 0; T ¼ 1; at r ¼ 0:1; ð5Þ

u ¼ 0; v ¼ 0; T ¼ 0; at r ¼ 1; ð6Þ

u ¼ 0; v ¼ 0;
oT
oz

¼ 0; at z ¼ 0: ð7Þ

The nondimensionalized position of the free surface

is described by a function g(t, r). Thermal, kinematic

and tangential and normal stress balance boundary con-

ditions at the interface are

1

N
�g0

oT
or

þ oT
oz

� �
¼ BiT ; ð8Þ

v ¼ og
ot

þ g0u; ð9Þ

ð1� g02Þ ou
oz

þ ov
or

� �
þ 2g0

ov
oz

� ou
or

� �

¼ �N
oT
or

þ g0
oT
oz

� �
; ð10Þ

�P þ 2

N 2

ov
oz

þ g02
ou
or

� g0
ov
or

þ ou
oz

� �� �

¼ 1� CaT
CaN

g00

N 2
þ g0

r

� �
; ð11Þ

where N = (1 + g 02)1/2 and g0 ¼ og
or. Ca provides a meas-

ure of surface deflection in response to thermocapil-

lary-induced stresses. If Ca = 0 (large surface tension),

the dynamic surface deformations can be neglected

and the free surface is nondeformable. The Biot number

in Eq. (8) is given by Bi = hH/k where h is a heat transfer

coefficient to the surroundings at the cold wall tempera-

ture. Free-surface curvature is determined by both sur-
face pressure and normal viscous stresses as shown in

Eq. (11).

The initial and boundary conditions for Eq. (11) con-

sidered here are:

gðt ¼ 0; rÞ ¼ 1;

gðt; r ¼ 0:1Þ ¼ 1;

gðt; r ¼ 1Þ ¼ 1: ð12Þ

The liquid volume must satisfy the mass conserva-

tion, and its total volume should be constant:

V ¼
2
R 1

0:1
rgdr

0:99
; ð13Þ

where the nondimensional liquid volume, V, is normal-

ized with respect to 0.99pHR2.
3. Numerical aspects

In order to solve the problem with a deformable sur-

face, the equations are transformed from the physical

domain (t, r,z) into a rectangular computational domain

(t,n,g).

n ¼ r ð14Þ

g ¼ z=gðt; rÞ ð15Þ

The transformed governing equations are

1

n
onu
on

� g
g0

g
ou
og

þ 1

g
ov
og

¼ 0; ð16Þ

Re
ou
ot

� g
g
og
ot

ou
og

þ 1
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onu2
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� g

g0
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ou2
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þ 1

g
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og

� �
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on

þ g
g0
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og

� u

n2
þr2u; ð17Þ

Re
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� g
g
og
ot
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og

þ 1

n
onuv
on

� g
g0

g
ouv
og

þ 1

g
ov2

og

� �

¼ � 1

g
oP
og

þr2v; ð18Þ

PrRe
oT
ot

� g
g
og
ot

oT
og

þ 1

n
onuT
on

� g
g0

g
ouT
og

þ 1

g
ovT
og

� �
¼ r2T ; ð19Þ

r2 ¼ 1

n
o

on
n
o

on

� �
� 2gg0

g
o2

ogon

þ 2
g0

g

� �2

� g00

g
� g0

gn

" #
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o

og

þ g0g
g

� �2

þ 1

g2

" #
o
2

og2
: ð20Þ



Table 1

Comparison of stream function minima with Bi = 0, where h is

a contact angle between the hot inside wall and the free surface

Re V Ca Grid number (r · z) w · 102

2000 1 0 61 · 61 �0.106

71 · 71 �0.106

91 · 91 �0.106

121 · 121 �0.106

0.05 61 · 61 �0.106

71 · 71 �0.106

81 · 81 �0.106

0.817 0 61 · 61 (h = 45) �0.209

71 · 71 (h = 45) �0.196

81 · 81 (h = 45) �0.190
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Fig. 2. Surface temperature distributions with Pr = 97, V = 1,

Ca = 0, Re = 510 and Ar = 1 (Ri/H = 0.111). The numerical

results with Bi = 2 are in good agreement with experiments [16].
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The transformed boundary conditions become

At n ¼ 0:1; T ¼ 1; u ¼ 0; v ¼ 0; ð21Þ

At n ¼ 1; T ¼ 0; u ¼ 0; v ¼ 0; ð22Þ

At g ¼ 0;
oT
og

¼ 0; u ¼ 0; v ¼ 0: ð23Þ

At the interface(g = 1),

1þ g02

g
oT
og

� g0
oT
on

¼ �NBiT ; ð24Þ

v ¼ og
ot

þ g0u; ð25Þ

1þ g02

g

� �
ou
og

� 2g0
ou
on

þ g0 þ g03

h

� �
ov
og

þ ð1� g02Þ ov
on

¼ �N
oT
on

; ð26Þ

�P þ 2

g
ov
og

� g0
ou
og

� �
þ 2g0

N 2
g0
ou
on

� ov
on

� �

¼ 1� CaT
CaN

g00

N 2
þ g0

n

� �
; ð27Þ

as in Eq. (11), P contains a free integration constant,

c(t). g(t, r) and c(t) are determined by Eqs. (27), (12),

(13). A shooting method is used to find c(t) at each time.

The free-surface shape, g(t, r), is unknown and should

be obtained as a solution of the coupled governing

equations along with the surface force balance. The

transformed governing Eqs. (16)–(19) and boundary

conditions Eqs. (21)–(27), are solved by a finite volume

method employing a SIMPLER algorithm. Nonuniform

grids are constructed with finer meshes in the regions un-

der the free surface and near the bottom and side walls

where boundary layers develop. All computations are

started with g = 1, v = 0 and conduction temperature

distribution. A brief summary of the computational pro-

cedure is as follows:

1. Start with initial conditions for T, v, and g.

2. The rectangular computational domain is generated

numerically.

3. Solve the transformed governing equations, Eqs.

(16)–(19), to find T and v with the transformed

boundary conditions, Eqs. (21)–(26).

4. Calculate g and c with the normal stress balance and

liquid volume equations, Eqs. (27), (12), (13).

5. Steps (2)–(4) are repeated at each time step until all

conditions for T, v, and g are satisfied with the

desired accuracy.

6. Return to step (1) for the next time step.

Convergence criteria for iterations within a time step

or a steady state are jsn + 1�snj < 10�9 and jsn + 1�snj/
jsn + 1j < 10�3, where s is any variable (u,v,T,g) at all

points and n is time marching or iteration level. In addi-

tion, time histories of velocities and temperature at the

mid-point of the free surface were compared to deter-

mine suitable time steps. In order to examine grid

dependence, stream function minima are computed with

various grids, Ca and V and listed in Table 1. A mesh of

71(r) · 71(z) with nonuniform grids is used for all

computations.

The numerical code is validated by comparing com-

puted surface temperatures with those from space exper-

iments [16] in Fig. 2. The parameters for the simulation

are Pr = 97, Ar = 1(Ri/H = 0.111), Ca = 0 and Re = 510.

Surface temperatures and gradients at the middle of the

surface decrease with increasing Bi as shown in Fig. 2.

The numerical results at Bi = 2 are in good agreement

with experiments.
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4. Results and discussion

4.1. Effect of Re and Ca on thermocapillary convection

with deformable surfaces and V = 1

We have investigated convection up to Re = 5000

with Ca 6 0.1 and Bi = 0, and have found no axisym-

metric oscillatory states with either nondeformable or

deformable surfaces. In three-dimensional numerical

simulations [17] with Pr = 30, Ar = 1, Bi = 0 and

Ca = 0 (nondeformable flat surface), the critical Reyn-

olds number for transition to oscillatory convection

was about 2200. We thus conclude that dynamic free-

surface deformations do not induce transition to un-

steady, oscillatory convection, and only azimuthal waves

can generate oscillations in this model. In addition,

we have computed axisymmetric convection up to

Re = 104 assuming undeformable and concave surfaces

(see Section 4.1 below), and no unsteady, oscillatory

convection was found. While oscillatory thermocapillary

convection with a nondeformable surface in a rectangu-

lar cavity can be two-dimensional [18], it cannot be real-

ized in an open annulus, an open cylinder (Ar = 1,

Pr = 30) [14] with a uniform heat flux and a liquid bridge

(Ar = 0.714, Pr = 27) [15]. We thus conclude that time-

dependent, large Pr thermocapillary convection with

the wavenumber of 0 does not occur in cylindrical geom-

etries near Ar = 1.

Fig. 3 shows free surfaces with Ca = 0.05 and various

Re. Curvature, sign and magnitude, is determined by

both the surface pressure and normal viscous stresses

as shown in Eq. (27). The surface is convex near the cold
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Fig. 3. Free surface deformations with V = 1, Bi = 0, Ca = 0.05

and various Re. Two free surface peaks increase to four with

increasing Re.
wall where surface pressure has a maximum positive

value at the stagnation point, and concave near the

hot wall. Two peaks appear at the free surface at suffi-

ciently low Re, and the surface shape follows the surface

pressure profile shown in Fig. 4 indicating small contri-

bution from normal viscous stresses. As Re increases,

viscous stresses dominate and cause additional ripples

at the free surface which even becomes convex close to

the hot corner. Surface elevations and depressions de-

crease with increasing Re due to this change in topology,

volume conservation, and curvature.

Figs. 5 and 6 show the variations of the free surface

with Ca at fixed Re = 1 and 2000, respectively. The

shape of the surface, number of ripples, and reflection

point do not change with Ca at a fixed Re, while the

magnitudes of depressions and elevations increase with

increasing Ca. Surface deformation is O(10�4). Its max-

imum value is 1.2 · 10�3, about 0.12% of the cylinder

height, with Re = 1 and Ca = 0.1. The effect of Ca on

stream function (w) minima, and surface temperature

and velocity distributions is shown in Fig. 7. All are

independent of Ca. Thus, dynamic surface deformations

with Ca 6 0.1 have little effect on the convection. This

result is consistent with that from liquid bridges [11].

Fig. 8 shows the effect of Bi on the free surface with

Ca = 0.05, Re = 2000. It derives from altered normal vis-

cous stresses since the surface pressure is almost inde-

pendent of Bi as shown in Fig. 9. The corresponding

surface temperature and velocity distributions are shown

in Fig. 10. While the magnitudes of the surface depres-

sions and elevations change a little with Bi at fixed Re

and Ca, the shape of the surface and the number of
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Surface curvature correlates with pressure at low Re.
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ripples do not change as shown in Fig. 8. Sharper tem-

perature gradients develop at the hot corner with in-

creased heat loss. This influences the thermocapillary

force and hence surface deformation. Surface tempera-

tures decrease with increasing Bi while surface velocities

increase due to increased temperature gradient. Table 2

lists stream function minima with various Bi and Ca. Ca

at fixed Bi has little effect on the convection as shown in

Table 2 and Fig. 7, while Bi substantially influences the

convection at fixed Ca.
4.2. Effect of free surface shape on thermocapillary

convection with Ca = 0

In this section the free surface is nondeformable. At

small Ca, the dynamic deviation of the surface shape

from the static meniscus is negligible as shown in Figs.

5 and 6. With Ca = 0 the normal stress balance, Eq.

(11), simplifies to the Young–Laplace equation and the

free surface profile g(r) obeys:

�CaDP ¼ 1

N
g00

N 2
þ g0

r

� �
; ð28Þ
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Table 2

Stream function minima (w · 102) with Bi at a fixed Re = 2000

and V = 1

Bi Ca = 0 Ca = 0.05

0 �0.106 �0.106

1 �0.112 �0.112

2 �0.116 �0.116

5 �0.123 �0.123
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where DP is the nondimensional pressure difference be-

tween the free surface and surroundings. The boundary

conditions for Eq. (28) considered here are:

g0ð0:1Þ ¼ � cotðhÞ;

gð1Þ ¼ 1; ð29Þ
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where h is the hot corner contact angle. With a pre-

scribed V and h, g(r) is determined by Eqs. (28) and

(13) with boundary conditions, Eq. (29). In space exper-

iments with a Pr = 30 liquid in a concave open annulus

[3], h was about 5�.
Convective flows with different h at a fixed liquid vol-

ume (V = 0.817) and Re = 2000 are shown in Fig. 11.

The corresponding surface velocity and temperature dis-

tributions are shown in Fig. 12. The flow fields show a

large toroidal cell (without a secondary vortex) which

is a characteristic of steady thermocapillary convection.
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Fig. 13. Effects of (a) liquid volume and (b) contact angle

on stream function minima with Bi = 0, Ca = 0 and Re =

2000. Convection is stronger with increasing V/h at fixed

h = 5/V = 0.817.
Surface temperatures near the middle of the free surface

decrease with increasing h, while surface velocities in-

crease due to increased local surface temperature gradi-

ents and decreased local surface curvatures as shown in

Fig. 12. Hence, convection is more vigorous with

increasing V/h at fixed h/V as shown in Fig. 13. This re-

sult is consistent with space experiments [3], where the

strength of convection increased with increasing liquid

volume at a fixed Re and h = 5.
5. Conclusions

Axisymmetric thermocapillary convection in an open

cylindrical annulus heated from the inside wall is com-

puted. The deformable free surface, with pinned contact

points, is obtained as a solution of the coupled transport

equations and boundary conditions. Only steady convec-

tion is possible at any Re in this two-dimensional model

with either nondeformable or deformable surfaces. Thus

dynamic free surface deformations do not induce transi-

tions to oscillatory axisymmetric convection even at large

Re and Ca. Free surfaces are convex near the cold wall

and concave at the hot wall. There are two peaks at

low Re and more surface ripples at larger Re. The shape

of the surface is independent of Ca at a fixed Re while the

magnitudes of elevations and depressions increase with

Ca. Heat loss from the surface substantially influences

the dynamics with more vigorous convection at larger

Bi. Convection depends significantly on free surface

curvature. Computations with nondeformable concave

interfaces (Ca = 0) at various V and h indicate stronger

circulations with increasing V/h at fixed h/V.
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